55762 measured reflections

 $R_{\rm int} = 0.025$

12996 independent reflections

9356 reflections with I > 2/s(I)

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Cytenamide-formic acid (1/1)

Andrea Johnston,^a Alastair J. Florence,^a* Gary J. Miller,^a Alan R. Kennedy^b and Colin T. Bedford^c

^aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, ^bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and ^cUniversity College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England

Correspondence e-mail: alastair.florence@strath.ac.uk/

Received 16 May 2008; accepted 24 June 2008

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.001 Å; *R* factor = 0.047; *wR* factor = 0.142; data-to-parameter ratio = 31.6.

In the crystal structure of the title compound [systematic name: 5H-dibenzo[a,d]cycloheptatriene-5-carboxamidemethanoic acid (1/1)], C₁₆H₁₃NO·CH₂O₂, the cytenamide and solvent molecules form a hydrogen-bonded $R_2^2(8)$ dimer motif, which is further connected to form a centrosymmetric double-motif arrangement. The asymmetric unit contains two formula units.

Related literature

For details on experimental methods used to obtain this form, see: Davis *et al.* (1964); Florence *et al.* (2003); Florence, Johnston, Fernandes *et al.* (2006). For related literature on cytenamide, see: Florence, Bedford *et al.* (2008). For cytenamide analogues, see: Cyr *et al.* (1987); Fleischman *et al.* (2003); Florence, Johnston, Price *et al.* (2006); Florence, Leech *et al.* (2007); Bandoli *et al.* (1992); Harrison *et al.* (2006); Leech *et al.* (2006); Florence, Shankland *et al.* (2008). For graph-set motifs, see: Etter (1990).

Experimental

Crystal data $C_{16}H_{13}NO\cdot CH_2O_2$ $M_r = 281.3$ Monoclinic, $P_{2_1/c}$ a = 11.5351 (13) Å b = 13.9095 (15) Å c = 17.6904 (19) Å $\beta = 95.846$ (5)°

 $V = 2823.6 (5) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 123 (2) K $0.25 \times 0.15 \times 0.05 \text{ mm}$ Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
T_{\min} = 0.978, T_{\max} = 0.996
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$vR(F^2) = 0.142$	independent and constrained
S = 1.02	refinement
2996 reflections	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
111 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O4$	0.884 (15)	2.035 (15)	2.9096 (12)	170.2 (13)
O3−H1 <i>O</i> ···O1	0.927 (18)	1.679 (19)	2.5971 (12)	169.9 (18)
O6−H2 <i>O</i> ···O2	0.91 (2)	1.66 (2)	2.5517 (12)	168.3 (19)
$N2 - H3N \cdots O5$	0.895 (15)	2.103 (15)	2.9645 (12)	161.2 (14)
$N2-H4N\cdots O4$	0.843 (16)	2.237 (15)	2.9129 (12)	137.3 (13)
N1−H2 <i>N</i> ···O5	0.866 (16)	2.151 (16)	2.9088 (12)	145.9 (13)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON* (Spek, 2003).

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk) and AstraZeneca for funding GJM.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2044).

References

- Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.
- Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). *Cryst. Growth Des.* 3, 909–919.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.
- Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). *CrystEngComm.* DOI: 10.1039/b719717a.
- Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.
- Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.

- Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
- Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). *CrystEngComm*, **10**, 26– 28.
- Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, 0240-0242.

Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o1379-o1380 [doi:10.1107/S1600536808019181]

Cytenamide-formic acid (1/1)

A. Johnston, A. J. Florence, G. J. Miller, A. R. Kennedy and C. T. Bedford

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr *et al.*, 1987). CYT-formic acid solvate was produced during an automated parallel crystallization study (Florence *et al.*, 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price *et al.*, 2006; Florence, Leech *et al.*, 2007) and its closely related analogues: CYT (Florence, Bedford *et al.*, 2008), 10,11-dihydrocarbamazepine (DHC) (Bandoli *et al.*, 1992; Harrison *et al.*, 2006; Leech *et al.*, 2006) and cyheptamide (Florence, Shankland *et al.*, 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence *et al.*, 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The molecules crystallize in the space group $P2_1/c$ with two CYT and two solvent molecules in the asymmetric unit. Both CYT molecules form an $R_2^2(8)$ (Etter, 1990) dimer motif with adjacent solvent molecules *via* contacts 1 - 4 (Table 1). In addition, two N—H…O contacts (5 and 6) join adjacent dimers to form a $R_4^2(8)$ centrosymmetric double motif (Fig. 2).

This packing arrangement is similar to that in CBZ-formic acid solvate which, in contrast, crystallizes with Z' = 1 in the monoclinic space group $P2_1/c$ (Fig. 2). The main difference being a doubling of the *a* axis in CYT-formic acid solvate (Z' = 2) (Fleischman *et al.*, 2003)

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis *et al.*, 1964). A single-crystal sample of the title compound was recrystallized from a saturated formic acid solution by isothermal solvent evaporation at 278 o K.

Figures

Fig. 1. The molecular structure and atomic labelling of CYT formic acid, showing 50% probability displacement ellipsoids.

Fig. 2. The crystal packing in CYT-formic acid (top) and CBZ-formic acid (bottom), viewed down the *a*-axis. Molecules are coloured according to symmetry equivalence.

5H-dibenzo[a,d]cycloheptatriene-5-carboxamide-methanoic acid (1/1)

 $F_{000} = 1184$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5 - 35.6^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 123 (2) K

Block, colourless

 $0.25\times0.15\times0.05~mm$

 $D_{\rm x} = 1.323 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 9893 reflections

Crystal data

C₁₆H₁₃NO·CH₂O₂ $M_r = 281.3$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.5351 (13) Å b = 13.9095 (15) Å c = 17.6904 (19) Å $\beta = 95.846 (5)^{\circ}$ $V = 2823.6 (5) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII CCD diffractometer	12996 independent reflections
Radiation source: fine-focus sealed tube	9356 reflections with $I > 2/s(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 123(2) K	$\theta_{\text{max}} = 35.7^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 2002)	$h = -18 \rightarrow 18$
$T_{\min} = 0.978, \ T_{\max} = 0.996$	$k = -18 \rightarrow 22$
55762 measured reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.142$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0728P)^{2} + 0.6562P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.002$
12996 reflections	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
411 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned at the structure invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.36614 (7)	0.30926 (5)	0.65575 (4)	0.02658 (15)
O2	0.10330 (7)	0.67015 (5)	0.37463 (4)	0.02342 (14)
O3	0.19631 (8)	0.37994 (6)	0.72402 (4)	0.02951 (16)
O4	0.14455 (7)	0.47636 (6)	0.62510 (4)	0.02896 (16)
O5	0.30232 (7)	0.49021 (6)	0.40062 (4)	0.03007 (17)
O6	0.23678 (8)	0.57335 (6)	0.29680 (4)	0.03242 (18)
N1	0.33490 (8)	0.39736 (6)	0.54859 (5)	0.02341 (16)
N2	0.11769 (8)	0.58059 (5)	0.48157 (5)	0.02066 (15)
C1	0.50028 (8)	0.29386 (6)	0.47664 (5)	0.01748 (14)
C2	0.57461 (8)	0.35519 (7)	0.44219 (5)	0.02202 (17)
H2	0.6303	0.3921	0.4731	0.026*
C3	0.56919 (9)	0.36362 (8)	0.36373 (6)	0.02555 (19)
H3	0.6216	0.4050	0.3413	0.031*
C4	0.48681 (10)	0.31127 (7)	0.31820 (6)	0.02523 (19)
H4	0.4826	0.3166	0.2645	0.030*
C5	0.41066 (9)	0.25107 (7)	0.35153 (5)	0.02272 (17)
H5	0.3528	0.2170	0.3201	0.027*

C6	0.41737 (8)	0.23938 (6)	0.43097 (5)	0.01853 (15)
C7	0.33783 (8)	0.17138 (6)	0.46164 (6)	0.02090 (16)
H7	0.2639	0.1641	0.4332	0.025*
C8	0.35587 (9)	0.11767 (6)	0.52507 (6)	0.02140 (16)
H8	0.2934	0.0769	0.5355	0.026*
C9	0.45948 (8)	0.11419 (6)	0.57986 (5)	0.02008 (16)
C10	0.48622 (11)	0.02677 (7)	0.61783 (6)	0.0281 (2)
H10	0.4344	-0.0261	0.6094	0.034*
C11	0.58653 (11)	0.01640 (7)	0.66714 (6)	0.0307 (2)
H11	0.6032	-0.0431	0.6923	0.037*
C12	0.66267 (10)	0.09340 (8)	0.67957 (6)	0.0282 (2)
H12	0.7329	0.0861	0.7120	0.034*
C13	0.63592 (9)	0.18121 (7)	0.64440 (5)	0.02332 (17)
H13	0.6877	0.2340	0.6537	0.028*
C14	0.53432 (8)	0.19277 (6)	0.59577 (5)	0.01848 (15)
C15	0.50395 (8)	0.29080 (6)	0.56232 (5)	0.01808 (15)
H15	0.5692	0.3343	0.5819	0.022*
C16	0.39403 (8)	0.33227 (6)	0.59203 (5)	0.01896 (15)
C17	-0.00637 (8)	0.82307 (6)	0.44107 (5)	0.01786 (15)
C18	-0.10409(9)	0.85561 (7)	0.39547 (5)	0.02321 (17)
H18	-0.1708	0.8155	0.3872	0.028*
C19	-0.10533(10)	0.94622 (8)	0.36176 (6)	0.0293 (2)
H19	-0 1734	0.9683	0 3321	0.035*
C20	-0.00710(11)	1 00399 (7)	0.37167 (6)	0.0306 (2)
H20	-0.0070	1 0654	0 3481	0.037*
C21	0.09067 (10)	0.97183 (7)	0.41602 (6)	0.027
H21	0.1585	1 0110	0.4216	0.032*
C22	0.09204 (8)	0.88216 (6)	0.45311 (5)	0.01954 (16)
C23	0.19633 (9)	0.85676(7)	0.50299 (6)	0.02165 (16)
H23	0.2679	0.8812	0.4887	0.02103 (10)
C24	0.20778 (8)	0.80303 (6)	0.56672 (5)	0.020
H24	0.2799	0.7946	0.5018	0.025*
C25	0.10967 (8)	0.75612 (6)	0.60205 (5)	0.023
C25	0.10907(0) 0.12267(0)	0.73012(0) 0.74452(7)	0.68148(5)	0.01317(13)
H26	0.12207 (7)	0.74452 (7)	0.7095	0.02342 (18)
C27	0.1750	0.70599 (7)	0.7093	0.023
U27 H27	0.03445 (11)	0.70333 (7)	0.7735	0.0270(2)
C28	-0.06874(10)	0.0990	0.7733	0.033°
U28	-0.1202	0.07088 (8)	0.07918 (0)	0.02703 (19)
C20	-0.1303	0.0318	0.7031	0.032°
U29	-0.08195 (9)	0.08445 (7)	0.00040 (3)	0.02193 (17)
П29 С20	-0.1321	0.0029	0.5729	0.020°
C30	0.00012 (8)	0.72303 (6)	0.30107(3)	0.01/23(14)
U31	-0.00/18(8)	0.72319(6)	0.47516 (5)	0.01655 (14)
H31	-0.0865	0.6964	0.4595	0.020^{*}
C32	0.12105 (0)	0.03013(0)	0.44077(5)	0.01/0/(14)
C33	0.13195 (9)	0.445/0(/)	0.08/83(6)	0.02455 (18)
U34	0.30291(11)	0.30933 (7)	0.53411(0)	0.0285 (2)
HIN	0.2766 (13)	0.4268 (10)	0.5677 (8)	0.029 (3)*
H2N	0.3531 (13)	0.4124 (11)	0.5038 (9)	0.034 (4)*

H3N	0.1661 (13)	0.5407 (11)	0.4605 (8)	0.029 (3)*
H4N	0.1007 (13)	0.5752 (10)	0.5266 (9)	0.029 (4)*
H34	0.3583 (14)	0.4788 (12)	0.3007 (10)	0.043 (4)*
H33	0.0717 (13)	0.4695 (10)	0.7176 (8)	0.029 (3)*
H1O	0.2537 (16)	0.3588 (14)	0.6949 (10)	0.053 (5)*
H2O	0.1899 (17)	0.6011 (14)	0.3288 (11)	0.057 (5)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0355 (4)	0.0284 (3)	0.0168 (3)	0.0098 (3)	0.0073 (3)	0.0041 (2)
O2	0.0336 (4)	0.0227 (3)	0.0146 (3)	0.0073 (3)	0.0055 (3)	0.0018 (2)
O3	0.0336 (4)	0.0363 (4)	0.0190 (3)	0.0070 (3)	0.0042 (3)	0.0048 (3)
O4	0.0346 (4)	0.0314 (3)	0.0216 (3)	0.0098 (3)	0.0064 (3)	0.0046 (3)
O5	0.0367 (4)	0.0318 (4)	0.0218 (3)	0.0112 (3)	0.0033 (3)	0.0044 (3)
O6	0.0484 (5)	0.0313 (4)	0.0181 (3)	0.0163 (3)	0.0061 (3)	0.0017 (3)
N1	0.0319 (4)	0.0219 (3)	0.0171 (3)	0.0081 (3)	0.0055 (3)	0.0027 (3)
N2	0.0279 (4)	0.0188 (3)	0.0154 (3)	0.0048 (3)	0.0030 (3)	0.0018 (2)
C1	0.0186 (4)	0.0186 (3)	0.0152 (3)	0.0005 (3)	0.0015 (3)	0.0000 (3)
C2	0.0198 (4)	0.0244 (4)	0.0219 (4)	-0.0018 (3)	0.0023 (3)	0.0028 (3)
C3	0.0260 (5)	0.0298 (4)	0.0220 (4)	0.0015 (4)	0.0080 (4)	0.0050 (3)
C4	0.0325 (5)	0.0270 (4)	0.0169 (4)	0.0063 (4)	0.0064 (3)	0.0006 (3)
C5	0.0285 (5)	0.0217 (4)	0.0176 (4)	0.0025 (3)	0.0005 (3)	-0.0035 (3)
C6	0.0198 (4)	0.0181 (3)	0.0177 (4)	0.0011 (3)	0.0022 (3)	-0.0019 (3)
C7	0.0201 (4)	0.0200 (3)	0.0222 (4)	-0.0022 (3)	0.0005 (3)	-0.0029 (3)
C8	0.0218 (4)	0.0189 (3)	0.0239 (4)	-0.0020 (3)	0.0042 (3)	-0.0019 (3)
C9	0.0233 (4)	0.0186 (3)	0.0188 (4)	0.0018 (3)	0.0045 (3)	-0.0006 (3)
C10	0.0395 (6)	0.0184 (4)	0.0266 (5)	0.0036 (4)	0.0037 (4)	0.0008 (3)
C11	0.0432 (6)	0.0241 (4)	0.0245 (5)	0.0135 (4)	0.0020 (4)	0.0023 (3)
C12	0.0300 (5)	0.0342 (5)	0.0204 (4)	0.0128 (4)	0.0019 (4)	0.0017 (4)
C13	0.0219 (4)	0.0305 (4)	0.0175 (4)	0.0035 (3)	0.0016 (3)	0.0014 (3)
C14	0.0195 (4)	0.0208 (3)	0.0155 (3)	0.0020 (3)	0.0038 (3)	0.0000 (3)
C15	0.0198 (4)	0.0187 (3)	0.0156 (3)	-0.0019 (3)	0.0007 (3)	-0.0004 (3)
C16	0.0250 (4)	0.0168 (3)	0.0149 (3)	0.0008 (3)	0.0012 (3)	-0.0018 (3)
C17	0.0212 (4)	0.0191 (3)	0.0137 (3)	0.0049 (3)	0.0042 (3)	0.0008 (3)
C18	0.0239 (4)	0.0300 (4)	0.0160 (4)	0.0089 (3)	0.0034 (3)	0.0027 (3)
C19	0.0377 (6)	0.0325 (5)	0.0186 (4)	0.0182 (4)	0.0071 (4)	0.0063 (3)
C20	0.0505 (7)	0.0216 (4)	0.0219 (4)	0.0135 (4)	0.0140 (4)	0.0056 (3)
C21	0.0401 (6)	0.0175 (3)	0.0232 (4)	0.0015 (3)	0.0123 (4)	0.0011 (3)
C22	0.0254 (4)	0.0172 (3)	0.0170 (4)	0.0030 (3)	0.0069 (3)	0.0000 (3)
C23	0.0218 (4)	0.0209 (3)	0.0228 (4)	-0.0014 (3)	0.0053 (3)	-0.0028 (3)
C24	0.0191 (4)	0.0214 (3)	0.0214 (4)	0.0011 (3)	0.0004 (3)	-0.0034 (3)
C25	0.0224 (4)	0.0174 (3)	0.0144 (3)	0.0031 (3)	0.0004 (3)	-0.0015 (3)
C26	0.0310 (5)	0.0224 (4)	0.0160 (4)	0.0028 (3)	-0.0021 (3)	-0.0026 (3)
C27	0.0418 (6)	0.0274 (4)	0.0138 (4)	0.0026 (4)	0.0045 (4)	-0.0012 (3)
C28	0.0345 (5)	0.0297 (4)	0.0182 (4)	-0.0001 (4)	0.0091 (4)	0.0016 (3)
C29	0.0244 (4)	0.0245 (4)	0.0175 (4)	-0.0001 (3)	0.0046 (3)	0.0013 (3)
C30	0.0208 (4)	0.0172 (3)	0.0139 (3)	0.0020 (3)	0.0022 (3)	0.0001 (3)

C31 C32 C33 C34	0.0180 (4) 0.0200 (4) 0.0256 (5) 0.0377 (6)	0.0187 (3) 0.0168 (3) 0.0288 (4) 0.0260 (4)	0.0129 (3) 0.0141 (3) 0.0190 (4) 0.0221 (4)	0.0008 (3) 0.0006 (3) 0.0013 (3) 0.0095 (4)	0.0013 (3) 0.0002 (3) 0.0014 (3) 0.0044 (4)	0.0005 (3) -0.0005 (3) -0.0025 (3) -0.0006 (3)
Geometric param	neters (Å, °)					
01—C16		1 2451 (11)	С12—Н	12	0.95	00
$0^{2}-0^{3}$		1.2473(11)	C12 II	12	1 39	07 (13)
$02 \ 03 \ 03 \ 03 \ 03 \ 03 \ 03 \ 03 \ $		1.2173(11) 1.3047(13)	С13—Н	13	0.95	00
03—H10		0.926(19)	C14—C	15	1.51	32 (12)
04 - C33		1 2111 (13)	C15—C	16	1.51	38 (13)
01 - 035 05-034		1 2076 (13)	С15—Н	15	1.00	00
06-C34		1 3048 (13)	C17—C	18	1 39	32 (13)
06—H2O		0.91(2)	C17—C	22	1.59	00(13)
N1-C16		1,3300(12)	C17—C	31	1.10	49 (12)
N1—H1N		0.884(15)	C18—C	19	1.31	37 (14)
N1—H2N		0.866 (16)	С18—Н	18	0.95	00
N2-C32		1.3277(11)	C19—C	20	1 38	55 (19)
N2—H3N		0.895 (15)	С19—Н	19	0.95	00
N2—H4N		0.843 (15)	C20—C	21	1 38	11 (16)
C1-C2		1 3931 (13)	С20—Н	20	0.95	00
C1 - C6		1 4086 (12)	C21-C	22	1 40	87 (13)
C1-C15		1 5126 (12)	С21—Н	21	0.95	00
C2—C3		1.3879 (14)	C22—C	23	1.46	11 (14)
C2—H2		0.9500	C23—C	24	1.34	80 (14)
C3—C4		1.3878 (15)	С23—Н	23	0.95	00
С3—Н3		0.9500	C24—C	25	1.46	04 (13)
C4—C5		1.3877 (15)	С24—Н	24	0.95	00
C4—H4		0.9500	C25—C	26	1.40	72 (13)
C5—C6		1.4091 (13)	C25—C	30	1.40	99 (13)
С5—Н5		0.9500	C26—C	27	1.38	67 (16)
С6—С7		1.4601 (13)	С26—Н	26	0.95	00
С7—С8		1.3465 (14)	C27—C	28	1.38	67 (16)
С7—Н7		0.9500	С27—Н	27	0.95	00
С8—С9		1.4608 (14)	C28—C2	29	1.39	04 (14)
С8—Н8		0.9500	С28—Н	28	0.95	00
C9—C14		1.4034 (13)	C29—C	30	1.39	56 (13)
C9—C10		1.4082 (13)	С29—Н	29	0.95	00
C10-C11		1.3838 (16)	C30—C	31	1.51	19 (12)
C10—H10		0.9500	C31—C	32	1.53	00 (12)
C11—C12		1.3883 (17)	С31—Н	31	1.00	00
C11—H11		0.9500	С33—Н	33	0.97	2 (15)
C12—C13		1.3911 (14)	С34—Н	34	1.00	8 (17)
С33—О3—Н1О		110.6 (11)	N1—C1	6—C15	116.	82 (8)
C34—O6—H2O		109.2 (12)	C18—C	17—C22	119.	54 (8)
C16—N1—H1N		117.3 (9)	C18—C	17—C31	119.	41 (8)
C16—N1—H2N		122.4 (10)	С22—С	17—C31	121.	04 (8)
H1N—N1—H2N		120.3 (14)	С17—С	18—C19	120.	93 (10)

C32—N2—H3N	117.1 (9)	C17—C18—H18	119.5
C32—N2—H4N	119.1 (10)	C19—C18—H18	119.5
H3N—N2—H4N	123.6 (13)	C20—C19—C18	119.85 (10)
C2—C1—C6	119.38 (8)	С20—С19—Н19	120.1
C2—C1—C15	120.00 (8)	С18—С19—Н19	120.1
C6—C1—C15	120.50 (8)	C21—C20—C19	119.61 (9)
C3—C2—C1	121.48 (9)	С21—С20—Н20	120.2
С3—С2—Н2	119.3	С19—С20—Н20	120.2
C1—C2—H2	119.3	C20—C21—C22	121.40 (10)
C4—C3—C2	119.63 (9)	C20—C21—H21	119.3
С4—С3—Н3	120.2	C22—C21—H21	119.3
С2—С3—Н3	120.2	C17—C22—C21	118.59 (9)
C5—C4—C3	119.71 (9)	C17—C22—C23	123.70 (8)
С5—С4—Н4	120.1	C21—C22—C23	117.70 (9)
C3—C4—H4	120.1	C24—C23—C22	128.14 (9)
C4—C5—C6	121.37 (9)	C24—C23—H23	115.9
С4—С5—Н5	119.3	С22—С23—Н23	115.9
С6—С5—Н5	119.3	C23—C24—C25	128.22 (9)
C1—C6—C5	118.36 (8)	С23—С24—Н24	115.9
C1—C6—C7	123.44 (8)	С25—С24—Н24	115.9
C5—C6—C7	118.20 (8)	C26—C25—C30	118.33 (9)
C8—C7—C6	128.27 (9)	C26—C25—C24	118.05 (8)
С8—С7—Н7	115.9	C30—C25—C24	123.61 (8)
С6—С7—Н7	115.9	C27—C26—C25	121.58 (9)
С7—С8—С9	128.16 (9)	С27—С26—Н26	119.2
С7—С8—Н8	115.9	C25—C26—H26	119.2
С9—С8—Н8	115.9	C28—C27—C26	119.57 (9)
C14—C9—C10	118.46 (9)	С28—С27—Н27	120.2
C14—C9—C8	123.52 (8)	С26—С27—Н27	120.2
C10—C9—C8	118.02 (9)	C27—C28—C29	119.86 (10)
С11—С10—С9	121.28 (10)	C27—C28—H28	120.1
C11—C10—H10	119.4	С29—С28—Н28	120.1
С9—С10—Н10	119.4	C28—C29—C30	121.19 (9)
C10-C11-C12	119.63 (9)	С28—С29—Н29	119.4
C10-C11-H11	120.2	С30—С29—Н29	119.4
C12—C11—H11	120.2	C29—C30—C25	119.38 (8)
C11—C12—C13	119.91 (10)	C29—C30—C31	119.82 (8)
C11—C12—H12	120.0	C25—C30—C31	120.68 (8)
C13—C12—H12	120.0	C30—C31—C17	113.42 (7)
C14—C13—C12	120.85 (10)	C30—C31—C32	113.29 (7)
C14—C13—H13	119.6	C17—C31—C32	111.73 (7)
С12—С13—Н13	119.6	С30—С31—Н31	105.9
C13—C14—C9	119.76 (8)	C17—C31—H31	105.9
C13—C14—C15	119.54 (8)	С32—С31—Н31	105.9
C9—C14—C15	120.68 (8)	O2—C32—N2	122.41 (8)
C1C15C14	113.51 (7)	O2—C32—C31	119.78 (7)
C1-C15-C16	113.15 (7)	N2—C32—C31	117.64 (8)
C14—C15—C16	111.80 (7)	O4—C33—O3	125.51 (10)
C1-C15-H15	105.9	O4—C33—H33	122.5 (9)

С14—С15—Н15	105.9	O3—C33—H33	112.0 (9)
C16—C15—H15	105.9	O5—C34—O6	125.69 (10)
O1-C16-N1	122.24 (9)	O5—C34—H34	122.9 (10)
O1—C16—C15	120.82 (8)	O6—C34—H34	111.4 (9)
C6—C1—C2—C3	-0.25 (14)	C22—C17—C18—C19	-0.09 (13)
C15—C1—C2—C3	-176.46 (9)	C31—C17—C18—C19	-178.49 (8)
C1—C2—C3—C4	1.11 (15)	C17—C18—C19—C20	1.91 (15)
C2—C3—C4—C5	0.03 (15)	C18—C19—C20—C21	-1.09 (15)
C3—C4—C5—C6	-2.05 (15)	C19—C20—C21—C22	-1.53 (15)
C2—C1—C6—C5	-1.70 (13)	C18—C17—C22—C21	-2.46 (13)
C15—C1—C6—C5	174.50 (8)	C31—C17—C22—C21	175.92 (8)
C2—C1—C6—C7	178.35 (9)	C18—C17—C22—C23	176.71 (8)
C15—C1—C6—C7	-5.46 (13)	C31—C17—C22—C23	-4.92 (13)
C4—C5—C6—C1	2.87 (14)	C20-C21-C22-C17	3.31 (14)
C4—C5—C6—C7	-177.17 (9)	C20—C21—C22—C23	-175.91 (9)
C1—C6—C7—C8	-31.43 (15)	C17—C22—C23—C24	-31.25 (15)
C5—C6—C7—C8	148.62 (10)	C21—C22—C23—C24	147.93 (10)
C6—C7—C8—C9	0.51 (16)	C22—C23—C24—C25	0.29 (16)
C7—C8—C9—C14	30.22 (15)	C23—C24—C25—C26	-149.76 (10)
C7—C8—C9—C10	-148.87 (10)	C23—C24—C25—C30	29.39 (14)
C14—C9—C10—C11	-2.97 (15)	C30—C25—C26—C27	-3.13 (13)
C8—C9—C10—C11	176.17 (10)	C24—C25—C26—C27	176.06 (9)
C9—C10—C11—C12	-0.07 (16)	C25—C26—C27—C28	0.85 (15)
C10-C11-C12-C13	2.07 (16)	C26—C27—C28—C29	1.48 (15)
C11—C12—C13—C14	-0.98 (15)	C27—C28—C29—C30	-1.49 (15)
C12—C13—C14—C9	-2.12 (14)	C28—C29—C30—C25	-0.84 (13)
C12-C13-C14-C15	176.15 (9)	C28—C29—C30—C31	175.30 (9)
C10-C9-C14-C13	4.02 (14)	C26—C25—C30—C29	3.08 (12)
C8—C9—C14—C13	-175.07 (9)	C24—C25—C30—C29	-176.06 (8)
C10-C9-C14-C15	-174.22 (9)	C26-C25-C30-C31	-173.03 (8)
C8—C9—C14—C15	6.69 (14)	C24—C25—C30—C31	7.83 (12)
C2-C1-C15-C14	-119.84 (9)	C29—C30—C31—C17	119.16 (9)
C6—C1—C15—C14	63.99 (11)	C25-C30-C31-C17	-64.75 (10)
C2-C1-C15-C16	111.37 (9)	C29—C30—C31—C32	-112.12 (9)
C6—C1—C15—C16	-64.80 (10)	C25—C30—C31—C32	63.98 (10)
C13-C14-C15-C1	117.00 (9)	C18—C17—C31—C30	-118.43 (9)
C9—C14—C15—C1	-64.75 (11)	C22—C17—C31—C30	63.20 (11)
C13-C14-C15-C16	-113.52 (9)	C18—C17—C31—C32	112.05 (9)
C9—C14—C15—C16	64.73 (11)	C22—C17—C31—C32	-66.32 (10)
C1-C15-C16-O1	157.50 (8)	C30—C31—C32—O2	-157.63 (8)
C14—C15—C16—O1	27.83 (12)	C17—C31—C32—O2	-28.05 (11)
C1-C15-C16-N1	-26.25 (11)	C30—C31—C32—N2	26.99 (11)
C14—C15—C16—N1	-155.92 (8)	C17—C31—C32—N2	156.57 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···O4	0.884 (15)	2.035 (15)	2.9096 (12)	170.2 (13)
O3—H1O…O1	0.927 (18)	1.679 (19)	2.5971 (12)	169.9 (18)

O6—H2O…O2	0.91 (2)	1.66 (2)	2.5517 (12)	168.3 (19)
N2—H3N…O5	0.895 (15)	2.103 (15)	2.9645 (12)	161.2 (14)
N2—H4N····O4	0.843 (16)	2.237 (15)	2.9129 (12)	137.3 (13)
N1—H2N…O5	0.866 (16)	2.151 (16)	2.9088 (12)	145.9 (13)

Fig. 2

